要计算120度等腰三角形的斜边长度,我们可以使用三角函数中的正弦和余弦函数。我们需要知道在120度等腰三角形中,底角是60度,顶角是60度。
步骤1: 确定角度
– 底角:60度
– 顶角:60度
– 总角度:120度
步骤2: 使用正弦和余弦定理
对于任意一个三角形,如果我们知道三个角的度数,我们可以使用正弦和余弦定理来找到其他两个角的度数。
对于底角:
设底角为 \( \theta \),则:
\[ \sin(\theta) = \frac{\text{对边}}{\text{斜边}} \]
\[ \cos(\theta) = \frac{\text{邻边}}{\text{斜边}} \]
由于底角相等,我们有:
\[ \sin(\theta) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \]
\[ \cos(\theta) = \cos(60^\circ) = \frac{1}{2} \]
对于顶角:
设顶角为 \( \phi \),则:
\[ \sin(\phi) = \frac{\text{对边}}{\text{斜边}} \]
\[ \cos(\phi) = \frac{\text{邻边}}{\text{斜边}} \]
由于顶角相等,我们有:
\[ \sin(\phi) = \sin(60^\circ) = \frac{\sqrt{3}}{2} \]
\[ \cos(\phi) = \cos(60^\circ) = \frac{1}{2} \]
步骤3: 使用正弦和余弦定理求解斜边
根据正弦和余弦定理,我们有:
\[ \text{斜边} = \sqrt{a^2 + b^2 – 2ab\cos(\theta)} \]
\[ a^2 + b^2 – 2ab\cos(\theta) = c^2 \]
将底角的正弦值代入:
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cos(60^\circ)} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{2})^2 – 2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2}} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^2 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边} = \sqrt{(\frac{\sqrt{3}}{2})^3 + (\frac{1}{16}) – 4} \]
\[ \text{斜边