复数,作为数学的一个基本概念,是实数和虚数的集合。在复数中,一个数被表示为a + bi,其中a是实部,b是虚部,i是虚数单位,满足i² = -1。
实部(a)
实部是一个数,它位于复平面的x轴上。对于任何复数c = a + bi,如果c的实部为a,那么c就是实数。例如,3 + 4i就是一个实数,因为3是它的实部。
虚部(b)
虚部是一个数,它位于复平面的y轴上。对于任何复数c = a + bi,如果c的虚部为b,那么c就是虚数。例如,2 + 3i就是一个虚数,因为2是它的实部,而3是它的虚部。
虚数单位
虚数单位i是复数的一个重要元素,它在数学中扮演着关键角色。i可以写作i² = -1。这个性质使得i在复数运算中具有特殊的地位。
复数的性质
– 加法:两个复数相加的规则与实数相同。例如,(3 + 4i) + (2 + 3i) = (3 + 2) + (4 + 3)i = 5 + 7i。
– 乘法:两个复数相乘的规则也与实数相同。例如,(3 + 4i) (2 + 3i) = (32 + 33i) + (42 + 43i)i = 6 + 9i + 8i – 8i – 12i² = 6 + 9i – 12i = 6 – 3i。
– 除法:复数的除法不是通常意义上的除法,而是求模运算。例如,(3 + 4i) / (2 + 3i) = (3/2 + 3/2i) / (2/2 + 3/2i) = (3/2 + 3/2i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 3/2i)(1-i)/(1+ i) = (3/2 + 300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000