
函数是高中数学的核心知识点,也是考试的重要部分。考试通常会涵盖函数的定义域、值域、单调性、周期性、奇偶性,以及指数函数、对数函数、幂函数及其图像,函数的零点与方程的根,函数模型及其应用等内容。
在考试中,函数相关的小题主要考查单一知识点,而大题则常常综合多个知识点,其中函数的基本性质和图像是考试的热点和重点。
试卷概览:
本套试卷着重考察函数的基础知识,题型涵盖了考试中的常见题型。难度适中,适合考生们进行基础复习和巩固。
试卷1:
本试卷的整体难度偏基础。选择题第1题考查了函数的单调性及奇偶性,题目较为简单。第2题是一道关于分段函数的单调性的题目,需要根据函数的定义域来推断出函数的单调性,并求出参数a的取值范围。第3题则需要根据题意得出函数f(x)的周期,从而推导出f(31)与f(1)的关系。
试卷2:
本试卷的第7题考查了奇函数的性质以及函数的单调性,需要通过令函数值为0来求出参数的值,并确定函数的单调性。第11题则是一道涉及指数运算、函数值域以及新定义的运算的题目,需要仔细读题,理解新定义的特点,并进行相应的计算。第13题是一道关于对数函数和幂函数的基础概念题。
试卷3:
本试卷的第17和第18题着重考查了对数函数的性质以及函数的单调性,需要通过对数函数的性质来求解参数的范围,并在函数的定义域内求解函数的最值。第19题是一道奇函数的综合题,需要通过奇函数的性质以及函数的单调性来求解。
试卷4:
本试卷的第20题是一道关于指数函数的题目,需要利用指数函数的性质以及不等式求解的方法来解答。第21题则是一道函数应用题,需要通过求出年利润的表达式以及分段求解的方法来找出最值。
通过以上分享的21道函数基础,相信大家对函数常见题型及解法有了更深入的了解。建议考生们将单独整理出来,进行针对性的复习和练习。在下一期,我们将继续分享函数拔高,敬请关注。
